04 05 randomness

Unknown Author
April 1,2014

Part I
Randomness : Monte Carlo techniques

Finding the area

Let us find the area of the disc. We know that a disc is given by the equation 2% + y? < 1. So if we generate (z,y)
uniform randomly on the [—1, 1] x [—1, 1] square, the proportion of the points lying in the disc will give the area.
I’11 put all the imports here so that it is easy to reference what we
In [17]: # are importing

import random

This is to plot points to show what is happening
import matplotlib.pylab

This we need to make vectorized versions of Monte Carlo simulations.
import numpy

smatplotlib inline

x = []
.y =[]
In [31: | $0r 1 in range(1000)
x.append (random.uniform (-1, 1))
y.append (random.uniform (-1, 1))
plt = matplotlib.pylab.scatter (x, V)
matplotlib.pylab.show (plt)

15

10}

05

0.0

0.5 F

-1.0}

_]_5_ i i i i i
-15 -1.0 -0.5 0.0 0.5 10 15

def area_circle(N)
In [4]: — :,O
incircle = 0
areaofsquare = 2%2 # 2 = length of [-1, 1]
while i < N :
X random.uniform (-1, 1)
vy random.uniform (-1, 1)
if xxx + yxy <=1
incircle += 1
i4+=1
area = (float(incircle)/N) % areaofsquare
return area

print area_circle (1000000)
In [5]: 3.141052

1 Monte Carlo Simulations

What we did above was some kind of Monte Carlo simulation. We estimated the probability of a random point on the
aforementioned square to lie on the circle. That probability turned out to be 7.

However computations only seem to make sense when the number of iterations are large. Because of that, I explain
how to do a numpy vectorized version of the code which will work faster. Though for the present examples it doesn’t
matter much, for huge simulations the vectorized version, if done properly, can save you a lot of time.

def vect_area_circle (N)

In [6]: # Create a 2xN aarray of random numbers
r = numpy.random.random((2, N)) = 2 — 1
x = r[0, :]
y = rl[l, :]
incircle = (x*x + yxy < 1)
no_incircle = numpy.sum(incircle)

return 4.0xfloat (no_incircle) /N

print vect_area_ circle (1000000)

In [7] 3.142084
$timeit area_circle (1000000)
In [8] Stimeit vect_area_circle (1000000)

best of 3:
best of 3:

5.98 s per loop
358 ms per loop

1 loops,
1 loops,

Simulations of probabilistic experiments

Consider the very simple game where you throw a dice. You gain n points if the dice shows n eyes. The first person

to achieve more than or equal to 50 points will win the game.

To code this game, it is useful to introduce another random function, random.randint. random.randint (a, b).
This returns a uniformly distributed random number uniformly distributed between a and b with the end points in-

cluded. As an example, I print 100 random integers between 1 and 6.

no = [0, O, O, O, 0O, O]
In [9]: for _ in range(100)

r = random.randint (1, 6)

nol[r — 1] += 1

print r, ",",
print
print "-"x10, "Distribution", "-"x10
print "1 %$3d \t 2 $3d \t 3 : $ 3d \n4 : %3d \t 5 \
: %3d \t 6 %$3d\nSum = %d" % tuple(no + [sum(no)])
1,6,2,4,2,4,6,5,4,2,3,06,06,
y 2,2 ,2,5,1,2,3,6,3,4,5,6,%6
6I3I4I5Ill5l1lll6lll6l4l4l
, 5,1, 2,3,2,1,2,3,6,3,5,1,2
3,6,6,2,6,5,6,2,1,6,4,1,1,
16/6/614111216111115/614/
—————————— Distribution -————-————-
1 17 2 21 3 12
4 : 11 5 14 6 25
Sum = 100
def stupid_game (withplayer=True)

In [10]: """withplayer If the user is going to input his
Setting this to False will make the computer play
itself.

t = 50 # total to reach
c = 0 # Computer’s score
p = 0 # player’s score
toss = random.randint (1, 2)
if toss == 1 :
print "Computer wins the toss."
else

print "Player wins the toss."

Play if toss = 1

if toss == 1 :
throw = random.randint (1,
c += throw

6)

while ¢ < t and p < t
if withplayer
throw = input ("Throw ")
Penalize cheaters You can write
all your AI Stuff here.
if throw > 6 :

S~ RS O
oY Y S
~ NN O
oSN U1~
S P SNON
WS N~
~ WS N
oSN N~
S~ W~ !,

N
~
o
~
N
~
ul
~
w

value.
with

throw —= 100
else
throw = random.randint (1, 6)
p += throw

throw = random.randint (1, 6)
c += throw

if c > p

print "Scores : COMP : %3d; Player : %3d." % (c, p)
elif c¢c < p

print "Scores : Comp : %3d; PLAYER : %3d." % (c, p)
else

print "Scores : Comp : %3d; Player : %3d." % (c, p)

if ¢ >= t and p >= t

print "There is a tie! :)"
elif c >= t :

print "The computer wins."
else

print "The player wins."
return None

stupid_game (False)

In [11]: Player wins the toss.
Scores : COMP : 3; Player : 2.
Scores : Comp : 4; PLAYER : 6.
Scores : Comp : 10; Player : 10.
Scores : COMP : 15; Player : 14.
Scores : Comp : 16; PLAYER : 17.
Scores : Comp : 17; PLAYER : 22.
Scores : Comp : 23; PLAYER : 25.
Scores : Comp : 25; PLAYER : 26.
Scores : COMP : 30; Player : 28.
Scores : COMP : 35; Player : 33.
Scores : Comp : 36; Player : 36.
Scores : Comp : 38; PLAYER : 41.
Scores : Comp : 44; PLAYER : 45.
Scores : Comp : 46; PLAYER : 49.
Scores : Comp : 49; PLAYER : 50.

The player wins.

Another example can be a simple random walk. Instead of doing graphics, let us do it using character drawings. We’ll
have an array of say 41 characters with a = at the 21st place and blanks everywhere else. Then we generate a random
number which takes values -1 and 1 with equal probability. If it is -1 we go one character left, otherwise we go one
character forward. If we hit an end, we always go away from the end.

def genmlpl ()

In [12]: """Generate -1 and 1 with equal probability."""
r = random.randint (0, 1)
return 2xr - 1

def random_step (path, pm)
In [13]: """Givgn a path and pqs;tion, it gives a new
path with updated position"""
n = len(path)
Find the current position, cp

cp = -1
hitl = 0
hitr = 0

for i in range(n)

if path[i] == '~’
cp = 1
if cp == -1 :
print "Cannot find current position."
retval = None

else

if cp == n-1 :
np = cp - 1 # np : new position
hitr += 1

elif cp ==
np = cp + 1
hitl += 1

else
np = cp + pm

path[cp]l = " 7’

path[np] = "«’

retval = (path, hitl, hitr)

return retval

def displaypath (path)
[14]. pathstr = "nn
for i in range(len (path))
pathstr += path[i]
print ' [’ + pathstr + "]’
return None

In

def random_walk (len_path=41, no_steps=100, init_pos = -1)
s ML
if init_pos < 0
init_pos = int (len_path/2 + 1)

path = [’ ’"]xlen_path
path[init_pos] = " «’
displaypath (path)
for _ in range (no_steps)
pm = genmlpl ()
(path, hl, hr) = random_step (path, pm)
hitl += hl
hitr += hr
if path == None
break
else :
displaypath (path)
print "Left wall hits : %d; Right wall hits : %d." % (hitl, hitr)
return None

random_walk ()
In [16]:

[
[
[
[
[
[
[
[*
[
[
[
[
[
[
[

S S VRV U VO S T (S

e e B T e T B e T e T I e T T T e T T T e T T T e T T I e T T T e T R T e T T e T e T T e T T T e B T R T T I e T T T e T I e R e T I e R e T I

UV S VA S VS VO VN VN VA VU VA S VA S VA S VA S VAU SN VAV VA VA A VA VSN A SR T

H— " — —m —m A P
L e L

eft wall hits : 0; Right wall hits : 0.

2 Monte Carlo Integration

The method relies of the fact that if 1, xs, . .., x,, are n uniformly distributed random numbers between a and b, then

b n
[rwyin= LD S 1)

n

Let us try this.
def mc_int (f, a, b, n)

In [17]: s =0
for i in range (n)
x = random.uniform(a, b)
s += f(x)

integral = (float (b-a)/n) * s
return integral

In [18]:
In [197]:
In [20]:

print mc_int (lambda x : 2xx, O,
99.719487342

Vectorized version

def mc_int_vec(f, a, b, n)

x = numpy.random.uniform(a,
s = numpy.sum(f (x))

i = (float(b-a)/n) * s
return i

totval = 0

for i in range (100)

intval

totval

#print
#print
print "Avg

Avg val =

= mc_int_vec (lambda x
+= intval
intval, ":",

val = ", (totval/100)
110.061918581

10,

b,

10000)

n)

1 + 2xx,

0,

10,

10000)

	I Randomness : Monte Carlo techniques
	Finding the area
	Monte Carlo Simulations
	Simulations of probabilistic experiments

	Monte Carlo Integration

