03_03_gaussian_elimination

Unknown Author

March 11, 2014

Part I

Gaussian Elimination - I

We need the following functions which we wrote in the last class.

```
def read_matrix(filename) :
            fl = open(filename, 'r')
In [1]:
            matrix = []
            for line in fl :
                row = []
                words = line.split()
                for word in words :
                   row.append(float(word))
                matrix.append(row)
            return matrix
        A = read_matrix("files/A.txt")
In [2]: print A
        [[1.0, 2.0, 3.0], [2.0, 1.0, 2.0], [3.0, 2.0, 1.0]]
        def print_matrix(matrix, myformat) :
            for row in matrix :
In [3]:
                for no in row:
                    print myformat % no,
                print
        print_matrix(A, "%10.0f")
                 1
In [4]:
                 2
                                         2
                             1
```

Row operation 1 : Interchanging two rows

As one can guess, this will be a function which takes a matrix as an input, and row numbers of two rows; like elem1(A, 0, 2). However, before we do that, it might be useful to define a function called $copy_row(source)$.

```
In [5]:

def copy_row(src) :
    dest = []
    for entry in src :
        dest.append(entry)
    return dest
```

```
def elem1(matrix, row1, row2) :
    if row1 < 0 or row2 < 0 or row1 >= len(matrix) or row2 >= len(matrix) :
       print "Row out of range."
    else :
       temp_row = copy_row(matrix[row1])
       matrix[row1] = copy_row(matrix[row2])
       matrix[row2] = copy_row(temp_row)
    return matrix
```

Row operation 2: multiplying a row by a non-zero scalar

The function will take a matrix, and row number and a scalar as input. We'll also check if the scalar is non-zero.

```
def elem2(matrix, row, scalar) :
           if row < 0 or row >= len(matrix) :
In [6]:
           print "row %d out of range." % row
elif scalar == 0 :
               print "scalar has to be non-zero."
           else :
               for i in range(len(matrix[row])) :
                  matrix[row][i] *= scalar
           return matrix
       print_matrix(A, "%2.0f")
In [7]: print "----
       print_matrix(elem2(A, 0, 4), "%2.0f")
       print "----"
       print_matrix(A, "%2.0f")
        1
        2 1 2
        3 2 1
        4 8 12
        2 1 2
        3 2 1
        4 8 12
        2 1 2
        3 2 1
```

row operation 3: replacing a row by the sum of that row and a multiple of another row.

Here we need 4 inputs to the function: + The matrix + The row to be changed + The row whose multiple will be added to the first row, + a scalar : the multiplication factor.

Again for this we use some helper functions which are readily available for vectors.

```
def add_vects(lst1, lst2) :
            return [a + b for (a, b) in zip(lst1, lst2)]
In [8]:
        def scalar_mult(a, lst) :
            return [a * no for no in lst]
        def elem3 (matrix, row_2b_changed, row_used_4_change, scalar) :
            temp_row = copy_row(scalar_mult(scalar, matrix[row_used_4_change]))
            matrix[row_2b_changed] = add_vects(matrix[row_2b_changed], temp_row)
            return matrix
```

```
print_matrix(A, "%2.0f")
In [9]: print "-"*20
       print_matrix(elem3(A, 0, 1, -2), "%2.0f")
       print "-"*21
       print_matrix(A, "%2.0f")
           8 12
        2
          1 2
        3
           2 1
        0
           6 8
        2
          1 2
        3
           2 1
        0 6 8
        2 1 2
        3
          2 1
```

1 Sweeping a column

If we recall, sweeping a column requires a matrix and an entry (position in the matrix) which we call pivot. We shall define the pivot as the 2-tuple (row_no, col_no).

```
def sweep(matrix, pivot) :
              (r, c) = pivot

if r < 0 or r >= len(matrix) :
In [10]:
                  print "row out of range"
              elif c < 0 or c >= len(matrix[r]) :
                  print "column out of range'
              elif matrix[r][c] == 0:
                  # pivot cannot be zero.
                  print("pivot cannot be zero.")
              else :
                  # print_matrix(matrix, "%5.2f")
                  pivot = matrix[r][c]
                   # Step 1 : multiply the row containing the pivot by 1/pivot to make the pivot
                  matrix = elem2(matrix, r, 1.0/pivot)
                   # print_matrix(matrix, "%5.2f")
                   # Step 2 : for row != that of pivot, subtract matrix[row][c] times the row con
                  for i in range(len(matrix)) :
                       if i != r :
                           matrix = elem3(matrix, i, r, -matrix[i][c])
# print_matrix(matrix, "%5.2f")
              return matrix
```

2 Gaussian elimination

Gaussian elemination is an algorithm to reduce a matrix to its reduced echelon form. Here *reduction* means performing row operations till the final matrix satisfies the definition of a reduced echelon form. For your convenience let us recall the definition.

An $m \times n$ matrix is said to be in echelon form, if it has $r, 0 \le r \le m$ non-zero rows and 1. All the non-zero rows are on the top. 1. For $1 \le i \le r$, p_i denotes the column containing the *first non-zero entry* of the *i*-th row, then $p_1 < p_2 < \cdots < p_r$. 1. $a_{ip_i} = 1$. The matrix is said to be in reduced echelon form if in addition to being in the echelon form, the p_i 'th columns have all but one zeroes. The non-zero entry is a_{ip_i} .

Example:

The matrix

0145

1433

0005

is not even in echelon form as $p_1 = 2$ and $p_2 = 1$ and hence $p_1 < p_2$ is not satisfied. Note, for the sake of giving an example, here $p_3 = 4$.

2145

1433

0005

is also not in echelon form because of the same reason.

1453

0382

0056

does satisf the conditions on p_i s but $a_{2p_2} \neq 1$ and hence is not in echelon form.

1403

0102

0016

is in echelon form but not in reduced echelon form as p_2 -th column has extra non-zero entries (namely 4).

1003

 $0\ 1\ 0\ 2$

0016

is in reduced echelon form.

The algorithm to reduce to echelon form.

- 1. First find the *first* non-zero column. Suppose the column number is p_1 and the first non-zero entry is in the *i*-th row.
- 2. Switch the 1st row with the *i*-th row.
- 3. Sweep the p_1 -th column
- 4. Repeat this for the smaller matrix spanning row 2 last row and column $p_1 + 1$ to the last column.

First let us write a function to find the first column with a non-zero entry.

It will return a tuple (row, column) for the non-zero entry. If the matrix is zero. It will return (-1, -1).

```
def first_non_zero(matrix) :
    found_entry = False
    column_scanning = 0
    if matrix == [] or matrix == [[]] :
        print "The matrix is empty."
```

```
row = -1
                  col = -1
                   while found_entry == False and column_scanning < len(matrix[0]) :</pre>
                       # len(matrix[0]) = number of columns of the matrix.
                       row_scanning = 0
                       while found_entry == False and row_scanning < len(matrix) :</pre>
                            #print "r, c : ", row_scanning, column_scanning
                           if matrix[row_scanning][column_scanning] != 0 :
                                found_entry = True
                                row = row_scanning
                                col = column_scanning
                           else :
                               row_scanning += 1
                       column_scanning += 1
                   if found_entry == False :
                       row = -1
                       col = -1
                       print "The matrix is the zero matrix."
              return (row, col)
          # To test it out :
In [12]: print first_non_zero([[0, 0, 0, 0], [0, 2, 1, 0], [0, 0, 5, 1], [0, 5, 5, 6]])
print first_non_zero([[0, 0, 0, 0], [0, 0, 0, 0]])
          print first_non_zero([[], []])
          (1, 1)
         The matrix is the zero matrix.
          (-1, -1)
         The matrix is the zero matrix.
          (-1, -1)
```

3 Digression: recursion

In python a function can call itself. It has some uses.

In math some things are defined recursively.

Example

Fibonacci sequences is defined to be sequence a_1, a_2, \ldots where

- $a_1 = 1$,
- $a_2 = 1$,
- for an other $n \ge 3$, $a_n = a_{n-1} + a_{n-2}$.

As demonstration let us define a function fib (n) which returns the n-th entry of the Fibonacci sequence, first without recursion, second with recursion.

```
def fib_nonrec(n) :
    if n != int(n) :
        print "Please input an positive integer."
        retval = None
    elif n <= 0 :
        print "Please input a natural number."
        retval = None
    elif n == 1 or n == 2 :
        retval = 1
    else :
        i = 2</pre>
```

```
fi = 1
                   fi_1 = 1
                   while i < n :</pre>
                       i += 1
fi_2 = fi_1
fi_1 = fi
                  fi = fi_1 + fi_2
retval = fi
              return retval
          for i in range(11):
            print fib_nonrec(i)
In [14]:
          print fib_nonrec(4.5)
         Please input a natural number.
         None
          1
          1
          2
          3
         5
         8
         13
         21
         34
         55
         Please input an positive integer.
         None
          def fib_rec(n) :
              \overline{\mathbf{if}} \overline{\mathbf{n}} != int(n) or n <= 0 :
In [15]:
                  print "Please input a natural number."
                   retval = None
              elif n == 1 or n == 2:
                  retval = 1
              else :
                  retval = fib_rec(n-1) + fib_rec(n-2)
              return retval
          for i in range(11) :
           print fib_rec(i)
In [16]:
          print fib_rec(4.5)
```

```
Please input a natural number.
None

1

1

2

3

5

8

13

21

34

55

Please input a natural number.
None
```

Another example

One can define the factorial of a number to be fact(0) = 1, fact(n) = n * fact(n-1)

```
def my_fact(n) :
            if n != int(n) or n < 0 :
In [17]:
               print "Expected a non-negative integer."
               retval = None
            elif n == 0:
               retval = 1
            else :
               retval = n * my_fact(n-1)
            return retval
        print my_fact(100.0), my_fact(-100), my_fact(1.0/100), my_fact(100)
In [18]: 9.33262154439e+157 Expected a non-negative integer.
        None Expected a non-negative integer.
        None 93326215443944152681699238856266700490715968264381621468592963895
        2175999932299156089414639761565182862536979208272237582511852109168640
```

3.1 Now we are ready to do Gaussian elimination

We shall first do it using recursion. For that we need a function to find the first non-zero column, c, and the first row which has a non-zero element in column c.

```
def left most non zero(M) :
              """Finds the left most non-zero entry in M. Returns (-1, -1) for zero and empty ma
In [19]:
             if M == [[]] or M == []:
                 print "The matrix is empty."
                 r = -1
                 c = -1
             else :
                 cell_found = False
                 present_col = 0
                 no\_of\_cols = len(M[0])
                 no\_of\_rows = len(M)
                 while present_col < no_of_cols and cell_found == False :</pre>
                      present_row = 0
                      while present_row < no_of_rows and cell_found == False :</pre>
                          if M[present_row] [present_col] != 0 :
```

```
cell_found = True
    r = present_row
    c = present_col
    present_row += 1
    present_col += 1

if cell_found == False :
    r = -1
    c = -1
    return (r, c)

my_matrix = [[0, 0, 1], [0, 0, 2], [0, 1, 3]]
print left_most_non_zero(my_matrix)
(2, 1)
```

Here is the algorithm.

- 1. First find the first non-zero column, say c, and find a row which has a non-zero entry on that column. Let that row by r.
- 2. Interchange rows 0 and r. (elementary operation 1).
- 3. Sweep respect to pivot (0, c).
- 4. Repeat the procedure on the submatrix whose first row is the elements of the 1st row from c+1 till the end till the last row from c+1 to the last column.

Thus to use recursion we shall write a function which given a matrix M and a coordinate (r, c) returns a submatrix as above. We also need a function which will help us to copy the submatrix at the correct position.

```
def extract_sub_matrix(M, t) :
              """M: matrix; t = (r, c) is the tuple such that every entry of the submatrix has coordinates (i, j) with i > r and j > c."""
In [21]:
              r = t[0]
              c = t[1]
              submat = []
              no\_rows\_M = len(M)
              if no_rows_M == 0 :
                  print "The matrix is empty."
              else :
                  no\_cols\_M = len(M[0])
                  for i in range(r+1, no_rows_M) :
                       current_row = []
                       for j in range(c+1, no_cols_M) :
                           current_row.append(M[i][j])
                       submat.append(current_row)
              return submat
          new_matrix=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]
         print_matrix(new_matrix, "%3.0f")
In [22]:
          print
          print_matrix(extract_sub_matrix(new_matrix, (-1,-1)), "%3d")
                2
                     3
                          4
            5
                6
                     7
                          8
            9
               10
                    11
                        12
            1
                2
                     3
                          4
                6
                     7
                          8
            9 10 11 12
```

```
def copy_back_submatrix(M, S) :
              """Copies submatrix S into M to the lower right of t."""
In [23]:
             no\_rows\_M = len(M)
             no\_rows\_S = len(S)
             if no_rows_M == 0 :
                 print "M is anyway empty."
                 retM = []
             elif no_rows_S == 0 :
                 print "Nothing to copy: S is empty"
                 retM = M
             else :
                 no\_cols\_M = len(M[0])
                 no\_cols\_S = len(S[0])
                 r = no_rows_M - no_rows_S
                 c = no\_cols\_M - no\_cols\_S
                 if r < 0 or c < 0 :
    print "Matrix S is too big."</pre>
                      retM = S
                 else :
                      retM = []
                      for i in range(no_rows_M) :
                          present_row = []
                          for j in range(no_cols_M) :
                              if i < r or j < c :
                                  present_row.append(M[i][j])
                              else :
                                  present_row.append(S[i-r][j-c])
                          retM.append(present_row)
             return retM
         print_matrix(new_matrix, "%3d")
In [24]: print "-"*15
         print_matrix(copy_back_submatrix(new_matrix, [[-2], [-3]]), "%3d")
           1
               2.
                    3
                        4
                       8
           5
               6
                  7
           9 10 11 12
                      4
               2
                    3
           1
           5
               6
                   7
                       -2
           9 10 11 -3
         def red_to_ech_form(M) :
              """Reduce matrix M to echelon form."""
In [25]:
              # First find the non-zero column.
             t = left_most_non_zero(M)
             r = t[0]
             c = t[1]
             if r == -1 or c == -1 :
                 retM = M
             else :
                  # Swap row r and row 0 and sweep
                  retM = M
                 retM = elem1(retM, r, 0)
                 retM = sweep(retM, (0, c))
                 Mprime = extract_sub_matrix(retM, (0, c))
                 Mprimeech = red_to_ech_form(Mprime)
                 retM = copy_back_submatrix(retM, Mprimeech)
             return retM
```

```
In [26]:
another_matrix = [[0,.5,1,0],[2,11,0,0],[1,0,0,9]]
print_matrix(another_matrix, "%10.5f")
       print "-"*50
       print_matrix(red_to_ech_form(another_matrix), "%10.5f")
          0.00000
                    0.50000
                              1.00000 0.00000
          2.00000 11.00000
                              0.00000
                                        0.00000
          1.00000 0.00000
                            0.00000
                                       9.00000
       _____
       The matrix is empty.
       Nothing to copy: S is empty
          1.00000 5.50000 0.00000 0.00000
          0.00000 1.00000 2.00000 0.00000
          0.00000 0.00000 1.00000 0.81818
```