03 03 gaussian_elimination

Unknown Author

March 11, 2014

Part 1
Gaussian Elimination - I

We need the following functions which we wrote in the last class.
def read_matrix (filename)

In [1]: fl = open(filename, ’"r’)
matrix = []
for line in f1
row = []
words = line.split ()

for word in words
row.append (float (word))
matrix.append (row)
return matrix

A = read_matrix("files/A.txt")
[2]: print A

In
(.o, 2.0, 3.0], f[2.0, 1.0, 2.0], [3.0, 2.0, 1.0]]
def print_matrix(matrix, myformat)

. for row in matrix
In [3]: .
for no in row
print myformat % no,
print
print_matrix (A, "%$10.0£f")
In [4]: 1 2 3
2 1 2
3 2 1

Row operation 1 : Interchanging two rows

As one can guess, this will be a function which takes a matrix as an input, and row numbers of two
rows; like eleml (A, 0, 2). However, before we do that, it might be useful to define a function called

COpy_row (source).
def copy_row(src)
[5] dest = [})
for entry in src
dest .append (entry)
return dest

In

def eleml (matrix, rowl, row2)
if rowl < 0 or row2 < 0 or rowl >= len(matrix) or row2 >= len(matrix)
print "Row out of range."

else
temp_row = copy_row(matrix[rowl])
matrix[rowl] = copy_row(matrix[row2])
matrix[row2] = copy_row (temp_row)

return matrix

Row operation 2 : multiplying a row by a non-zero scalar

The functionw will take a matrix, and row number and a scalar as input. We’ll also check if the scalar is non-zero.
def elem2 (matrix, row, scalar)

. if row < 0 or row >= len (matrix)
In [6]: . °
print "row %d out of range." % row
elif scalar == 0 :
print "scalar has to be non-zero."
else

for i in range(len(matrix[row]))
matrix[row] [i] *= scalar
return matrix

print_matrix (A, "%2.0£f")

In [7]: prlnt "= "
print_matrix(elem2 (A, 0, 4), "%2.0f")

PrRliE Veoseoeseossoesssossassssss "
print_matrix (A, "%2.0f£")
1 2 3

2 1 2

3 2 1

4 8 12

2 1 2

3 2 1

4 8 12

2 1 2

3 2 1

row operation 3 : replacing a row by the sum of that row and a multiple of another row.

Here we need 4 inputs to the function: + The matrix + The row to be changed + The row whose multiple will be added
to the first row, + a scalar : the multiplication factor.

Again for this we use some helper functions which are readily available for vectors.

def add_vects(lstl, 1lst2)
In [8]: return [a + b for (a, b) in zip(lstl, 1lst2)]

def scalar_mult (a, 1lst)
return [a *» no for no in 1lst]

def elem3 (matrix, row_2b_changed, row_used_4_change, scalar)
temp_row = copy_row(scalar_mult (scalar, matrix[row_used_4_change]))
matrix[row_2b_changed] = add_vects (matrix[row_2b_changed], temp_row)
return matrix

print_matrix (A, "%$2.0£")

In [9]: print "-"=x20
print_matrix(elem3(aA, 0, 1, -2), "%2.0£f")
print "-"=x21
print_matrix (A, "%2.0f£")

4 8 12
2 1 2
3 2 1
0O 6 8
2 1 2
3 2 1
0O 6 8
2 1 2
3 2 1

1 Sweeping a column

If we recall, sweeping a column requires a matrix and an entry (position in the matrix) which we call pivot. We shall
define the pivot as the 2-tuple (row_no, col_no).
def sweep (matrix, pivot)
In [10] _(r, c) = inOt
if r < 0 or r >= len(matrix)
print "row out of range"
elif ¢ < 0 or ¢ >= len(matrix[r])
print "column out of range"
elif matrix[r][c] == 0:
pivot cannot be zero.
print ("pivot cannot be zero.")
else
print_matrix (matrix, "$5.2f")
pivot = matrix[r] [c]

Step 1 : multiply the row containing the pivot by 1/pivot to make the pivot
matrix = elem2 (matrix, r, 1.0/pivot)
print_matrix (matrix, "$5.2f")

Step 2 : for row != that of pivot, subtract matrix[row] [c] times the row con
for i in range(len (matrix))
if i !=r :
matrix = elem3 (matrix, i, r, —matrix[i] [c])

print_matrix (matrix, "$5.2f")
return matrix

2 Gaussian elimination

Gaussian elemination is an algorithm to reduce a matrix to its reduced echelon form. Here reduction means performing
row operations till the final matrix satisfies the definition of a reduced echelon form. For your convenience let us recall
the definition.

An m X n matrix is said to be in echelon form, if it has », 0 < r» < m non-zero rows and 1. All the non-zero rows
are on the top. 1. For 1 < ¢ < r, p; denotes the column containing the first non-zero entry of the i-th row, then
p1 < p2 < -+ < pp. L. a;p, = 1. The matrix is said to be in reduced echelon form if in addition to being in the
echelon form, the p;’th columns have all but one zeroes. The non-zero entry is a;y,.

Example :

The matrix
0145
1433
0005

is not even in echelon form as p; = 2 and p, = 1 and hence p; < ps is not satisfied. Note, for the sake of giving an
example, here p3 = 4.

2145

1433

0005

is also not in echelon form because of the same reason.

1453

0382

0056

does satisy the conditions on p;s but asp, 7 1 and hence is not in echelon form.
1403

0102

0016

is in echelon form but not in reduced echelon form as p»-th column has extra non-zero entries (namely 4).
1003

0102

0016

is in reduced echelon form.

The algorithm to reduce to echelon form.

1. First find the first non-zero column. Suppose the the column number is p; and the first non-zero entry is in the
1-th row.

2. Switch the 1st row with the 7-th row.

Sweep the p;-th column

4. Repeat this for the smaller matrix spanning row 2 - last row and column p; + 1 to the last column.

hed

First let us write a function to find the first column with a non-zero entry.

It will return a tuple (row, column) for the non-zero entry. If the matrix is zero. It will return (-1, -1).
def first_non_zero (matrix)

In [117: found_entry = False
column_scanning = 0
if matrix == [] or matrix == [[]]

print "The matrix is empty."

In [12]:

row = —1

col = -1
else :
while found_entry == False and column_scanning < len(matrix([0])
len (matrix[0]) = number of columns of the matrix.
row_scanning = 0

while found_entry ==
#print "r, c o

False and row_scanning < len(matrix)

, row_scanning,
if matrix[row_scanning] [column_scanning]

found_entry = True

row = row_scanning

col = column_scanning
else

row_scanning += 1

column_scanning += 1

if found_entry == False
row = —1
col = =1

print "The matrix is the zero matrix."

return (row, col)
To test it out

print first_non_zero([[0, O, O,
print first_non_zero([[0, 0, O,
print first_non_zero([[], []])
(1, 1)

The matrix is the zero matrix.
(-1, -1)

The matrix is the zero matrix.
(_ll _1)

3 Digression : recursion

In python a function can call itself. It has some uses.

In math some things are defined recursively.

Example

Fibonacci sequences is defined to be sequence a1, ao, . . .
*a =1,
® ag = 1,

e for an othern > 3, a, = ap_1 + ap_o.

01, [0,
01, [0,
where

column_scanning

0

As demonstration let us define a function £ib (n) which refurns the n-th entry of the Fibonacci sequence, first without

recursion, second with recursion.

In

[13]:

def fib_nonrec (n)
if n != int (n)

print "Please input an positive integer."

retval = None
elif n <= 0

print "Please input a natural number."

retval = None
elif n == 1 or n == 2
retval = 1
else :
i=2

fi =1
fi_ 1 =1
while i < n
i +=1
fi_ 2 = fi_1
fi_ 1 = fi
fi = fi_ 1 + £fi_2
retval = fi
return retval

for 1 in range(11):
In [14]: print fib_nonrec (i)
print fib_nonrec(4.5)

Please input a natural number.

None
1
1
2
3
5
8
13
21
34
55
Please input an positive integer.
None
def fib_rec(n)
In [15]: if n != int (n) or n <= 0
print "Please input a natural number."
retval = None
elif n == 1 or n == 2
retval = 1
else :
retval = fib_rec(n-1) + fib_rec(n-2)

return retval

for i in range(1l1)
In [16]: print fib_rec (i)
print fib_rec(4.5)

Please input a natural number.
None

g w N -

8

13

21

34

55

Please input a natural number.
None

Another example

One can define the factorial of a number to be fact(0) = 1, fact(n) = n * fact(n-1)
def my_fact (n)
print "Expected a non-negative integer."
retval = None

elif n == 3
retval = 1
else
retval = n » my_fact(n-1)

return retval

print my_fact (100.0), my_fact (-100), my_fact(1.0/100), my_fact (100)

In [18]: 9.33262154439%9e+157 Expected a non-negative integer.
None Expected a non-negative integer.
None 93326215443944152681699238856266700490715968264381621468592963895
2175999932299156089414639761565182862536979208272237582511852109168640
00000000000000000000000

3.1 Now we are ready to do Gaussian elimination

We shall first do it using recursion. For that we need a function to find the first non-zero column, c, and the first row
which has a non-zero element in column c.

def left_most_non_zero (M)
In [19]: """pFinds the left most non-zero entry in M. Returns (-1, -1) for zero and empty ma

if == [[]] or = []¢
print "The matrix is empty."
r =1l
c =1

else
cell_found = False
present_col = 0
no_of_cols len(M[0])
no_of_rows len (M)

while present_col < no_of cols and cell_found == False
present_row = 0
while present_row < no_of_rows and cell_found == False
if M[present_row] [present_col] != 0

cell found = True
r = present_row
c = present_col
present_row += 1
present_col += 1

if cell found == False
r = -1
8 = =1

return (r, c)

my_matrix = [[0, O, 1], [0, O, 2], [0, 1, 311
In [20]: print left_most_non_zero (my_matrix)
(2, 1)

Here is the algorithm.

1. First find the first non-zero column, say ¢, and find a row which has a non-zero entry on that column. Let that
row by r.

2. Interchange rows 0 and r. (elementary operation 1).

Sweep respect to pivot (0, c).

4. Repeat the procedure on the submatrix whose first row is the elements of the 1st row from ¢ + 1 till the end till
the last row from ¢ + 1 to the last column.

»

Thus to use recursion we shall write a function which given a matrix M and a coordinate (r, ¢) refurns a submatrix as
above. We also need a function which will help us to copy the submatrix at the correct position.

def extract_sub_matrix (M, t)
In [21]: "rrM o matrix; t = (r, c) is the tuple such that every entry of the submatrix has
coordinates (i, j) with i > r and j > c."""

r = t[0]
c = t[1l]
submat = []
no_rows_M = len (M)
if no_rows_M == 0
print "The matrix is empty."
else

no_cols_ M = len(M[0])
for i in range(r+l, no_rows_M)
current_row = []
for j in range(c+l, no_cols_M)
current_row.append (M[i] []])
submat . append (current_row)
return submat

new_matrix=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]

In [22]: pr?nt_matrix(new_matrix, "$3.0£")
print
print_matrix (extract_sub_matrix (new_matrix, (-1,-1)), "%3d")

1 2 3 4
5 6 7 8
9 10 11 12

def copy_back_submatrix (M, S)

In [23]: """Copies submatrix S into M to the lower right of t."""
no_rows_M = len (M)
no_rows_S = len(S)

if no_rows_M ==
print "M is anyway empty."

retM = []
elif no_rows_S == 0
print "Nothing to copy: S is empty"
retM = M
else :
no_cols_M = len(M[0])
no_cols_S = len(S[0])
r = no_rows_M — no_rows_S

c = no_cols_M - no_cols_S
if r < 0orc <O
print "Matrix S is too big."
retM = S
else :
retM = []
for i in range (no_rows_M)
present_row = []
for j in range (no_cols_M)
if i < ror j < c
present_row.append (M[1][]J])
else
present_row.append (S[i-r][j-c])
retM. append (present_row)
return retM

print_matrix(new_matrix, "%3d")
In [24]: pr:l.nt "-"yx15
print_matrix (copy_back_submatrix (new_matrix, [[-2], [-3]1]), "%3d")
1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 -2
9 10 11 -3

def red_to_ech_form (M)

In [25]: ""'"Reduce matrix M to echelon form."""

First find the non-zero column.

t = left_most_non_zero (M)

r = t[0]

c = t[1l]

if r == -1 or ¢ == -1
retM = M

else
Swap row r and row 0 and sweep
retM = M

retM = eleml (retM, r, 0)
retM = sweep (retM, (0, c))

Mprime = extract_sub_matrix(retM, (0, c))
Mprimeech = red_to_ech_form(Mprime)
retM = copy_back_submatrix (retM, Mprimeech)

return retM

another_matrix = [[0,.5,1,01,([2,11,0,01,[1,0,0,91]

In [26]: print_matrix (another_matrix, "%10.5f")
" print "-"%50
print_matrix (red_to_ech_form(another_matrix), "%$10.5f")
0.00000 0.50000 1.00000 0.00000
2.00000 11.00000 0.00000 0.00000
1.00000 0.00000 0.00000 9.00000

The matrix is empty.
Nothing to copy: S 1is empty

1.00000 5.50000 0.00000 0.00000
0.00000 1.00000 2.00000 0.00000
0.00000 0.00000 1.00000 0.81818

	I Gaussian Elimination - I
	Row operation 1 : Interchanging two rows
	Row operation 2 : multiplying a row by a non-zero scalar

	Sweeping a column
	Gaussian elimination
	Digression : recursion
	Now we are ready to do Gaussian elimination

