
SOME LINEAR ALGEBRA

VIVEK MOHAN MALLICK

In this talk all the numbers are real.

1. Linear equations and matrices

Suppose we want to solve the system of linear equations :

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We can write this equation in a matrix form :







a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn















x1

x2

...
xn








=








b1
b2
...
bm








.

In short, we shall write this equation as A~x = ~b.
Here we can think of A to be a function which takes vectors in R

n to vectors
in R

m; i.e., it is the function which takes a vector ~α in R
n to A~α ∈ R

m. In this
language, the above problem reduces to asking, “What are the vectors in R

n, which

go to ~b under the function A?”
Now A has the following properties :

A(~x+ ~y) = A~x+A~y, for x, y ∈ R
n;

A(α~x) = αA~x for ~x ∈ R
n, α ∈ R.

Definition 1. Such a function is called a linear transformation.

We saw that matrices give rise to linear transformations. The opposite is also
true.

Remark 2. Suppose B : Rn → R
m is a linear transformation. Let

B








1
0
...
0








︸ ︷︷ ︸

e1

=








b11
b12
...

b1m








, B










0
1
0
...
0










︸ ︷︷ ︸

e2

=








b21
b22
...

b2m








, · · · , B








0
...
0
1








︸ ︷︷ ︸

en

=








bn1
bn2
...

bnm








Let e1, e2, . . . , en be the vectors in R
n as marked in the above equation.
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Now for any vector ~x ∈ R
n, we have

B(~x) = B(








x1

x2

...
xn







) = B(x1e1 + · · ·+ xnen) = x1B(e1) + · · ·+ xnB(en)

by linearity,

= x1








b11
b12
...

b1m








+ · · ·+ xn








bn1
bn2
...

bnm








= B








x1

x2

...
xn








where

B =








b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn








.

Therefore B corresponds to the matrix B.

2. Examples

2.1. Affine transformations. Consider some standard motions we know.

Rotation.: All rotations considered are counter-clockwise on R
2 around ori-

gin. So the origin is fixed under any of the rotations. Thus a rotation Rθ

of angle θ will take the point (1, 0) to (cos θ, sin θ); and will take (0, 1) to
(cos(90◦ + θ), sin(90◦ + θ)) = (− sin θ, cos θ).

Thus the matrix for this tranformation is

Rθ =

(
cos θ − sin θ
sin θ cos θ

)

.

Translation: Let Ta,b be the translation which takes (x, y) to (x+ a, y + b).
Translation cannot be a linear transformation if we think of it as a function
from R

2 to R
2. The reason is a linear transformation always fixes (0, 0)1.

However if we think of R2 sitting in R
3 by identifying (x, y) with (x, y, 1) ∈

R
3, we can code translation by (a, b) to be a linear transformation. Note

we want (x, y, 1) to go to (x+ a, y + b, 1).
• Therefore, (0, 0, 1) goes to (a, b, 1).
• (1, 0, 1) goes to (1+a, b, 1); and hence by linearity, (1, 0, 0) = (1, 0, 1)−
(0, 0, 1) goes to (1 + a, b, 1)− (a, b, 1) = (1, 0, 0)

• Following the same argument, Ta,b(0, 1, 0) = Ta,b((0, 1, 1)− (0, 0, 1)) =
(a, b+ 1, 1)− (a, b, 1) = (0, 1, 0).

Therefore, the matrix for translation is

Ta,b =





1 0 a
0 1 b
0 0 1



 .

1
T (~0) = T (0 ·

~0) = 0 · T (~0) = ~0
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Reflection: Reflection along x-axis is given by (x, y) 7→ (x,−y). Check that
the matrix is given by

(
1 0
0 −1

)

.

xercise 1. Prove that the reflection along the line x = y is given by the
matrix (

0 1
1 0

)

.

2.2. Adjacency matrix. Suppose A, B and C are three cities. Suppose the num-
ber of flights plying between the cities are given by the following table.

To destination
A B C

From source
A 0 2 5
B 3 0 0
C 3 1 0

This means that there are no flights from B to C, however there are 5 flights
from A to C; and so on.

However if you are willing to stop over at exactly one place, then the there are
options to go from B to C (left figure):
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The right figure gives the options to go from A to B with exactly one stop over.
Therefore the total number of options to go from B to C with exactly one stop
over is the inner product of the row B and column C. Similarly the total number of
options to go from A to B is the product of row A and column B. Thus the number
of options for all possible pairs is given by the square of the matrix :





0 2 5
3 0 0
3 1 0









0 2 5
3 0 0
3 1 0



 =





21 5 0
0 6 15
3 6 15





Note that the number of options to go from B to A with exactly one stop over is 0,
though you have 3 ways to go from B to A directly. This is because the stop over
cannot be at A since you cannot go from A to A. Similarly you cannot go from B
to B. And you cannot go to C from B.

3. Row operations and échelon forms

Elementary row operations are following :

(1) interchanging two rows
(2) multiplying a row by a non-zero scalar
(3) replacing a row by the sum of that row and a scalar multiple of another

row.
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Note that in the equation A~x = ~b, suppose we perform row operations on the
augmented matrix (A : b) and get another matrix (U : v) where U is an m × n

matrix and and v is an m-dimensional vector. Then, the solutions to A~x = ~b are
the same as those of U~x = ~v.

3.1. Sweeping out a column with respect to a pivot. Suppose A is a matrix
and akl 6= 0. Sweeping out the l-th column with akl as a pivot is the following
procedure :

(1) Multiply the k-th row by 1/akl. (Elementary operation 1)
(2) For each row r, r 6= k, do the following :

(a) Multiply the k-th row by arl and subtract from the r-th row. (Ele-
mentary operation 3)

After this procedure the l-th column will be the vector (0, . . . , 0, 1, 0, . . . , 0) with
the 1 being at the k-th place.

Example 3. Suppose

A =





0 2 3 2
1 4 5 5
3 0 2 6





and suppose we take a23 to be the pivot. The sweeping procedure will then be

Multiply row 2 by 1/a23:




0 2 3 2
1/5 4/5 1 1
3 0 2 6





Sweep row 1: Multiply row 2 by a13 = 3 and subtract from row 1 (thus
replacing row 1) to get





−3/5 −2/5 0 −1
1/5 4/5 1 1
3 0 2 6





Sweep row 3: Multiply row 2 by a33 = 2 and subtract form row 3 (thus
replacing row 3) to get





−3/5 −2/5 0 −1
1/5 4/5 1 1
13/5 −8/5 0 4





Note that after the operation the third column is (0, 1, 0) as was expected.

Definition 4. An m× n matrix with r nonzero rows (0 ≤ r ≤ m) A is said to be
in échelon form if

(1) the first r rows are nonzero (this will force the last m− r rows to be zero);
(2) if pi is the first column, where the i-th row has its first nonzero entry,

p1 < p2 < · · · < pr;
(3) aipi

= 1.

A matrix A is said to be in reduced échelon form if it is in échelon form and akpi
= 0

for all k 6= i (in other words, the pi-th column has all zeros except at the i-th place).


