
Some remarks on conics on a projective plane

I want to prove that under projective transformations, any non-degenerate conic
can be mapped to any other non-degenerate conic.

1. Conics in RP
2

As discussed in class, the conics in RP
2 are defined to be the zeroes of a second

degree equation of the form

q(X,Y, Z) := aX2 + 2bXY + cY 2 + 2dXZ + 2eY Z + fZ2 = 0

1.1. Quadratic forms and bilinear forms. We begin by observing that q(X,Y, Z)
can be written as

(1.1.1) q(X,Y, Z) =
(

X Y Z
)





a b d
b c e
d e f









X
Y
Z



 .

1.1.2. Notation. For the sake of brevity, let us denote

v =





X
Y
Z



 A =





a b d
b c e
d e f



 .

1.1.3. Therefore, q(X,Y, Z) = vtAv.

1.1.4. Note that this is a quadratic form corresponding to the bilinear form

(v, w) 7→ vtAw, v, w ∈ R
3.

Now we recall a result from linear algebra.

1.1.5. Proposition. Suppose for v and w in R
n if (v, w) 7→ B(v, w) is a bilinear

form, then there exists a basis for R
n, with respect to which B is represented by a

matrix of the form




Ir 0 0

0 −Is 0

0 0 0



 .

A very brief sketch of the proof. First note that if a bilinear form satifies B(v, w) =
0 for all v, w ∈ V , the respective matrix is forced to be the zero matrix, in which
case we are done.

Suppose there exist v and w such that B(v, w) 6= 0. We shall construct a u such
that B(u, u) 6= 0. If B(v, v) 6= 0, take u = v. Similarly, if B(w,w) 6= 0 take u = w.
If B(v, v) = B(w,w) = 0, note that B(v + w, v + w) = 2B(v, w) 6= 0. Therefore
take u = v + w.

If B(u, u) > 0, let b1 = u/
√

B(u, u). In this case B(b1, b1) = +1. In case

B(u, u) < 0, take b1 = u/
√

−B(u, u) in which case B(b1, b1) = −1.

Let b⊥
1

be the vector subspace

{v ∈ V | B(b1, v) = 0} .
For any basis e2, . . . , en of b⊥

1
, the matrix for B will look like

(

±1 ~0t

~0 B′

)

where the ±1 stands for B(b1, b1). Now restricting the bilinear form to b⊥
1
, our

result follows by induction. �
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1.1.6. Note that the bilinear form we are considering is symmetric. (One can
associate a symmetric bilinear form to any quadratic form, since xtQx = xt((Q +
Qt)/2)x for any matrix Q.)

1.2. Effect of projective transformations on the formula of a conic. We
know that a projective transformation is given by an invertible linear map T : R3 →
R

3. Suppose

T (e1) = v1

T (e2) = v2

T (e3) = v3

where ei is the standard basis element with 1 at the i-th place and zero everywhere
else.

1.2.1. Therefore, the matrix of T would look like (v1 v2 v3). Now for a vector

v =





a
b
c



 ∈ R
3,

v = αv1 + βv2 + γv3 where




α
β
γ



 = T−1





a
b
c



 .

One way to see this is to note that,

ae1 + be2 + ce3 =
(

e1 e2 e3
)





a
b
c



 = I3TT
−1





a
b
c



 =
(

v1 v2 v3
)

T−1





a
b
c



 .

Thus if v = (a, b, c)t is a point on the conic, i.e. vtAv = 0, in the new coordinates,
we shall have (α β γ)T tAT (α β γ)t.

1.2.2. Thus starting with a symmetric bilinear form (v, w) 7→ vtAw, suppose we
find a basis x1, x2, x3 such that xt

iAxj = 0 for i 6= j and is ±1 for i = j. Then the
transformation (x1 x2 x3) will reduce the equation of the conic to a standard form.

2. Example

2.1. Finding the basis.

2.1.1. Suppose we want to find the projective transformation which transforms
Y 2 + 2XZ + Z2 into a circle (U2 + V 2 −W 2 for some U , V and W ).

2.1.2. Note that

Y 2 + 2XZ + Z2 =
(

X Y Z
)





0 0 1
0 1 0
1 0 1









X
Y
Z





2.1.3. Consider the bilinear form B(v, w) defined by

B(v, w) =
(

v1 v2 v3
)





0 0 1
0 1 0
1 0 1









w1

w2

w3



 for v =





v1
v2
v3



 , w =





w1

w2

w3



 .

In short, B(v, w) = v3w1 + v2w2 + v1w3 + v3w3.
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2.1.4. Note that B((0, 0, 1)t, (0, 0, 1)t) = 1. Set

U =





0
0
1



 .

Note that in this case B(U,U) is already of the form ±1. In case, it was nonzero but

not of the form ±1, we would have to replace U by U/
√

B(U,U) in case B(U,U) > 0

or by U/
√

−B(U,U) in case B(U,U) < 0.

2.1.5. Now we do the same procedure on the space orthogonal1 to 〈U〉. The or-
thogonal space is

U⊥ =
{

v ∈ R
3 | B(U, v) = 0

}

=
{

(v1, v2, v3)
t ∈ R

3 | v1 + v3 = 0
}

=
{

(a, b,−a)t | a, b ∈ R
}

.

Note that (0, 1, 0)t ∈ U⊥ and B((0, 1, 0)t, (0, 1, 0)t) = 1 and hence we set

V =





0
1
0



 .

Now look at the orthogonal space

V ⊥ =
{

(a, b,−a)t
∣

∣ B((0, 1, 0)t, (a, b,−a)t = 0
}

=
{

(a, b,−a)t | b = 0
}

=
{

(a, 0,−a)t | a ∈ R
}

.

For the sake of complicating the example let us look atW ′ = (2, 0−2)t. B(W ′,W ′) =

(−2)2 + 2(−2) + (−2)(−2) = −4. Therefore, we take W = W ′/
√
4, that is

W =





1
0
−1



 .

2.1.6. Therefore, the basis we want is given by U , V and W .

2.2. The transformation.

2.2.1. By the discussion in 1.2.2, the transformation T =
(

U V W
)

would satisfy

T t





0 0 1
0 1 0
1 0 1



T =





1 0 0
0 1 0
0 0 −1





2.2.2. Hence the formula of the conic after transforming by T is

(

α β γ
)





1 0 0
0 1 0
0 0 −1









α
β
γ



 = α2 + β2 − γ2 = 0

which is nothing but the equation of a circle.

2.2.3. Now suppose you want to find the transformation which takes a non-degenerate
conic given by the equation, say f(X,Y, Z) = 0 to another non-degenerate conic
given by the equation, say g(X,Y, Z) = 0. One way to do this will be to find a
transformation, say T , which takes f = 0 to the circle and find another transfor-
mation, say S, which takes g = 0 to a circle. Then S−1 ◦ T will take f = 0 to
g = 0.

1with respect to B


